126 research outputs found

    Molecular dynamics recipes for genome research

    Get PDF
    Molecular dynamics (MD) simulation allows one to predict the time evolution of a system of interacting particles. It is widely used in physics, chemistry and biology to address specific questions about the structural properties and dynamical mechanisms of model systems. MD earned a great success in genome research, as it proved to be beneficial in sorting pathogenic from neutral genomic mutations. Considering their computational requirements, simulations are commonly performed on HPC computing devices, which are generally expensive and hard to administer. However, variables like the software tool used for modeling and simulation or the size of the molecule under investigation might make one hardware type or configuration more advantageous than another or even make the commodity hardware definitely suitable for MD studies. This work aims to shed lights on this aspect

    RhythmicDB: A Database of Predicted Multi-Frequency Rhythmic Transcripts

    Get PDF
    The physiology and behavior of living organisms are featured by time-related variations driven by molecular clockworks that arose during evolution stochastically and heterogeneously. Over the years, several high-throughput experiments were performed to evaluate time-dependent gene expression in different cell types across several species and experimental conditions. Here, these were retrieved, manually curated, and analyzed by two software packages, BioCycle and MetaCycle, to infer circadian or ultradian transcripts across different species. These transcripts were stored in RhythmicDB and made publically available

    A Multi-Layered Study on Harmonic Oscillations in Mammalian Genomics and Proteomics

    Get PDF
    Cellular, organ, and whole animal physiology show temporal variation predominantly featuring 24-h (circadian) periodicity. Time-course mRNA gene expression profiling in mouse liver showed two subsets of genes oscillating at the second (12-h) and third (8-h) harmonic of the prime (24-h) frequency. The aim of our study was to identify specific genomic, proteomic, and functional properties of ultradian and circadian subsets. We found hallmarks of the three oscillating gene subsets, including different (i) functional annotation, (ii) proteomic and electrochemical features, and (iii) transcription factor binding motifs in upstream regions of 8-h and 12-h oscillating genes that seemingly allow the link of the ultradian gene sets to a known circadian network. Our multifaceted bioinformatics analysis of circadian and ultradian genes suggests that the different rhythmicity of gene expression impacts physiological outcomes and may be related to transcriptional, translational and post-translational dynamics, as well as to phylogenetic and evolutionary components

    Multifaceted enrichment analysis of RNA-RNA crosstalk reveals cooperating micro-societies in human colorectal cancer

    Get PDF
    Alterations in the balance of mRNA and microRNA (miRNA) expression profiles contribute to the onset and development of colorectal cancer. The regulatory functions of individual miRNA-gene pairs are widely acknowledged, but group effects are largely unexplored. We performed an integrative analysis of mRNA–miRNA and miRNA–miRNA interactions using high-throughput mRNA and miRNA expression profiles obtained from matched specimens of human colorectal cancer tissue and adjacent non- tumorous mucosa. This investigation resulted in a hypernetwork-based model, whose functional back- bone was fulfilled by tight micro-societies of miR- NAs. These proved to modulate several genes that are known to control a set of significantly enriched cancer-enhancer and cancer-protection biological processes, and that an array of upstream regulatory analyses demonstrated to be dependent on miR-145, a cell cycle and MAPK signalling cascade master regulator. In conclusion, we reveal miRNA-gene clusters and gene families with close functional relationships and highlight the role of miR-145 as potent upstream regulator of a complex RNA–RNA crosstalk, which mechanistically modulates several signalling path- ways and regulatory circuits that when deranged are relevant to the changes occurring in colorectal carcinogenesis

    MicroRNA co-expression networks exhibit increased complexity in pancreatic ductal compared to Vater’s papilla adenocarcinoma

    Get PDF
    iRNA expression abnormalities in adenocarcinoma arising from pancreatic ductal system (PDAC) and Vater’s papilla (PVAC) could be associated with distinctive pathologic features and clinical cancer behaviours. Our previous miRNA expression profiling data on PDAC (n=9) and PVAC (n=4) were revaluated to define differences/ similarities in miRNA expression patterns. Afterwards, in order to uncover target genes and core signalling pathways regulated by specific miRNAs in these two tumour entities, miRNA interaction networks were wired for each tumour entity, and experimentally validated target genes underwent pathways enrichment analysis. One hundred and one miRNAs were altered, mainly over-expressed, in PDAC samples. Twenty-six miRNAs were deregulated in PVAC samples, where more miRNAs were down-expressed in tumours compared to normal tissues. Four miRNAs were significantly altered in both subgroups of patients, while 27 miRNAs were differentially expressed between PDAC and PVAC. Although miRNA interaction networks were more complex and dense in PDAC than in PVAC, pathways enrichment analysis uncovered a functional overlapping between PDAC and PVAC. However, shared signalling events were influenced by different miRNA and/or genes in the two tumour entities. Overall, specific miRNA expression patterns were involved in the regulation of a limited core signalling pathways in the biology landscape of PDAC and PVAC

    Novel α-actin gene mutation p.(ala21val) causing familial hypertrophic cardiomyopathy, myocardial noncompaction, and transmural crypts. clinical-pathologic correlation

    Get PDF
    .Background: Mutations of α-actin gene (ACTC1) have been phenotypically related to various cardiac anomalies, including hypertrophic cardiomyopathy and dilated cardiomyopathy and left ventricular (LV) myocardial noncompaction. A novel ACTC mutation is reported as cosegregating for familial hypertrophic cardiomyopathy and LV myocardial noncompaction with transmural crypts. Methods and results: In an Italian family of 7 subjects, 4 aged 10 (II-1), 14 (II-2), 43 (I-4) and 46 years (I-5), presenting abnormal ECG changes, dyspnea and palpitation (II-2, I-4, and I-5), and recurrent cerebral ischemic attack (I-5), underwent 2-dimensional echo, cardiac magnetic resonance, Holter monitoring, and next-generation sequencing gene analysis. Patients II-2 and I-5 with ventricular tachycardia underwent a cardiac invasive study, including coronary with LV angiography and endomyocardial biopsy. In all the affected members, ECG showed right bundle branch block and left anterior hemiblock with age-related prolongation of QRS duration. Two-dimensional echo and cardiac magnetic resonance documented LV myocardial noncompaction in all and in I-4, I-5, and II-2 a progressive LV hypertrophy up to 22-mm maximal wall thickness. Coronary arteries were normal. LV angiography showed transmural crypts progressing to spongeous myocardial transformation with LV dilatation and dysfunction in the oldest subject. At histology and electron microscopy detachment of myocardiocytes were associated with cell and myofibrillar disarray and degradation of intercalated discs causing disanchorage of myofilaments to cell membrane. Next-generation sequencing showed in affected members an unreported p.(Ala21Val) mutation of ACTC. Conclusions: Novel p.(Ala21Val) mutation of ACTC1 causes myofibrillar and intercalated disc alteration leading to familial hypertrophic cardiomyopathy and LV myocardial noncompaction with transmural crypt

    Influence of sampling on the determination of warfarin and warfarin alcohols in oral fluid

    Get PDF
    Background and Objective: The determination of warfarin, RS/SR- and RR/SSwarfarin alcohols in oral fluid may offer additional information to the INR assay. This study aimed to establish an optimized sampling technique providing the best correlation between the oral fluid and the unbound plasma concentrations of these compounds. Materials and Methods: Samples of non-stimulated and stimulated oral fluid, and blood were collected from 14 patients undergoing warfarin therapy. After acidification, analytes were extracted with a dichloromethane/hexane mixture and determined by HPLC with fluorescence detection. Plasma samples were also ultrafiltered for the determination of the unbound fraction. The chromatographic separation was carried out in isocratic conditions with a phosphate buffer/methanol mobile phase on a C-18 reversed-phase column. The absence of interfering compounds was verified by HPLC-ESI-Q-TOF. Results: Stimulation generally increased the oral fluid pH to values close to blood pH in about 6 minutes. The concentration of warfarin and RS/SR-warfarin alcohols in oral fluid followed the same trend, whereas the concentration of RR/SS-warfarin alcohols was not affected. Six minute stimulation with chewing gum followed by collection with a polyester swab was the best sampling procedure, with a good repeatability (RSD 〈10%) and relatively low inter-subject variability (RSD =30%) of the oral fluid to plasma ratio. This procedure provided strong correlations between the measured oral fluid and unbound plasma concentration of warfarin (r = 0.92, p 〈0.001) and RS/SR-warfarin alcohols (r =5 0.84, p 〈0.001), as well as between stimulated oral fluid and total plasma concentration of warfarin (r = 0.78, p 〈0.001) and RS/SR-warfarin alcohols (r = 0.81, p 〈0.001). Conclusion: The very good correlation between oral fluid and unbound plasma concentration of warfarin and RS/SR-warfarin alcohols suggests that oral fluid analysis could provide clinically useful information for the monitoring of anticoagulant therapy, complentary to the INR assay
    • …
    corecore